September, 2018

A breakthrough in yield and quality enhancement in maize hybrid seed production

CONFIDENTIAL & PROPRIETARY ©2017 AAT, LLC

WHY, HOW, WHAT

CROSS-POLLINATION = HIGHER PRODUCTIVITY

IT'S ALL ABOUT THE POLLEN

PROBLEM

Enabling cross-pollination is <u>difficult and expensive</u> <u>COST PROHIBITIVE IN WHEAT/SOYBEANS</u>

SOLUTION

Delivering desired <u>viable pollen</u> to the <u>right location</u>, at the <u>right time</u> while <u>avoiding</u> undesired contaminant pollen

Corn Hybrid Seed Production

Must de-tassel the ?'s to enable cross pollination

PRESERVE. ENHANCE. GROW.

CORN HYBRID SEED PRODUCTION

CORN HYBRID SEED PRODUCTION HAS NOT CHANGED

HIGH LABOR / RESOURCE COSTS

HIGH CONTAMINATION HIGH DISCARD RATE (ABOUT 7%)

AN AVERAGE OF >20% SEED YIELD LOSS

NEW SEED PRODUCTION SYSTEM DIRECT COMPARISON IN CORN (1MM ACRES U.S.)

Process	Traditional	PowerPollen™
Pollen Timing	3 hour window	On-demand: 24/7
Pollen Delivery	Weather Dependent	Weather Resilient
Field Isolation	Large Tracts of Land	Minimized
De-tasseling Female Rows	Labor Intensive	Labor almost eliminated
Male Presence (zero yield)	Required: 15-40%	Minimized/eliminated
Risk Management	~30% Over-Production	<15% Over-Production
Seed Yield	~70 Saleable Units/A	>85 Saleable Units/A

CONFIDENTIAL & PROPRIETARY ©2018 AAT, LLC

THE BREAKTHROUGH

Industry's first maize pollen preservation method

Rigorous & at scale. Non-regulated, accelerated go-to-market strategy

On-demand method to "preempt" contamination

Less discard, higher yield and lower cost of goods

CONFIDENTIAL & PROPRIETARY ©2017 AAT, LLC

HOW IT WORKS FOR CORN

Less Discard & More Yield = MoreProduct to Sell

HOW IT WORKS PRESERVATION AND STORAGE: Method Development

Ampha Z32 provides instant feedback on treatments

Iterations of experiments results refine experiments, are very **fs**

Two methods developed: 1. Short Term: <20 days 2. Long Term: >8 months

HOW IT WORKS - CORN

Pollen Collection

Mobile Pollen Preservation and Storage On-Demand Pollen Dispersal

CONFIDENTIAL & PROPRIETARY ©2017 AAT, LLC

HOW IT WORKS FOR CORN

CONFIDENTIAL & PROPRIETARY ©2018 AAT, LLC

powerpollen

HOW IT WORKS FOR CORN

Applying pollen at night Eastern Iowa pollen applied hCentral Nebraska <u>First time in history!</u>

CONFIDENTIAL & PROPRIETARY ©2018 AAT, LLC

HOW IT WORKS COLLECTING POLLEN

CRITICAL: START WITH HIGH QUALITY POLLEN

Instant viability measurements with Ampha Z32
Confirm that the fresh pollen is high quality

PRESERVE. ENHANCE. GROW.

HOW IT WORKS PRESERVATION AND STORAGE: High Throughput

Large conditioning and storage methods: 100s of acres

Ampha Z32 measurement during storage – sub-sample over time

- Confirm that the stored pollen is viable and storage conditions are adequate
- Adjust as appropriate

powerbollen

HOW IT WORKS DISPERSING POLLEN TO TARGET

<u>CRITICAL</u>: Confirm viable pollen right before application

Ampha Z₃₂

3 SEASONS OFFIELD RESULTS IN CORN

MORE THAN 20% YIELD INCREASE

CUT DISCARD RATE BY >50%

POLLEN VIABILITY DURATION 1 hour 5760 hours

REAL SEED PRODUCTION EXAMPLE – 2017 IN-SEASON ADJUSTMENT TO MITIGATE DROUGHT EFFECTS

OPEN-POLLINATED

~July 19-20 Peak pollen available ~July 16

A single pollen application returned most of the yield

PowerPollenSM

on July 23 Sample ear harvested on Aug 7

OPEN-POLLINATED ~July 19-20

powerpollen

REAL SEED PRODUCTION EXAMPLE – 2017

In-season adjustment to mitigate drought effects

2019-2025 GROWTH OPPORTUNITIES

Market	Year
Corn Seed US	2018
Corn Seed OUS	2019-20
Corn Grain	2021
Rice Seed	2021-22
Wheat Seed	2022-23

Can Better Cross-Pollination Improve Wheat and Rice Seed & Grain Yield? YES TBD

Other Applications of Preserved Pollen

- Breeding, research and development applications
 - Greenhouse, isolated crossing blocks
 - Breeding crosses, line increases
 - Viable pollen when it is needed for critical crosses, while saving space
- Enabling wide cross hybrids
 - More diversity in the breeding programs
- All inbreds/varieties can work as males
- New breeding to maximize xenia effect (grain yield)
- Many other related applications

PRESERVE. ENHANCE. GROW.

Ampha Za

IT'S ALL ABOUT THE POLLEN

PROBLEM

Enabling cross-pollination is <u>difficult and expensive</u> <u>COST PROHIBITIVE IN WHEAT/SOYBEANS</u>

SOLUTION

Delivering desired <u>viable pollen</u> to the <u>right location</u>, at the <u>right time</u> while <u>avoiding</u> undesired contaminant pollen

